According to the String theory, monopoles always have a finite mass. The magnetic field lines spread out radially in all directions, with no looping back inside as seen in magnetic dipoles. On passing through a superconducting loop, it induces a distinct signal that is equally sensitive at all velocities and masses.

History

Artificial Monopole Discovery

Magnetic Monopole for the Grand Unified Theory

Dirac String and Magnetic Monopole

Black Holes and Magnetic Monopole

Magnetic Monopole Prediction by the Big Bang Theory

Magnetic Monopole in Cosmology

Magnetic Monopole Concept in Other Physical Laws

Uses

A handful of them believed that they could be produced in large numbers in photon exchange of particle accelerators and should be detected as the photons get scattered. The results of such tests were also not favorable. However, some were successful in reproducing these particles in lab environments. London Centre for Nanotechnology (LCN) scientists also provided evidence of the existence of unipolar magnets in nature by using special neutron scattering techniques. This could give people an insight into the properties of magnetic monopoles as predicted by Dirac. Hyperbolic monopoles at the centre of hyperbolic spaces have been a subject of extensive research. Some have also conducted a search by neutrino telescopes utilizing massive light emission. That topological insulators can induce magnetic monopoles has been proposed by certain physicists as well. Condensed-matter physicists could reproduce the monopolar magnets artificially in oxide crystals of rare earths called spin ices where the electrons behave like a cluster of monopoles near absolute zero temperatures. The unipolar particles so formed are not considered to be real particles like protons and electrons. Instead, they are referred to as quasi-particles since their appearance is a result of a collective behavior of the surrounding electrons and atoms and they can interact with each other. Replicating these elusive particles in synthetic environments without violating any laws of Physics has paved the way of finding the real particles. The theory of quantum mechanics could unify all the other forces except gravity. While most of the particles appearing in the quantum field theory are unstable and decay into other particles obeying the laws of conservation, the monopolar magnets predicted by GUT remain stable, but not because they satisfy any conservation condition. It is because there are no simpler topological states into which they can decay. The Kaluza-Klein theory tries to merge gravity with electromagnetism by assuming the existence of a fifth dimension beyond space-time. A modification in the monopole theory implies a possible C-violation of electromagnetic interactions. Physical laws maintain symmetry under a charge-conjugation transformation. This is known as C-symmetry, which may be violated by some weak interactions. They can make matter strong enough to resist nuclear explosion and can produce magnetic levitation. Monopole magnet motors can make free energy generators that convert normal matter into pure energy. Universitat Autònoma de Barcelona scientists in 2015 could create the first experimental wormhole in the lab using the concept of single pole magnets. Though it is still a distant dream, rockets propelled by magnetic monopoles might provide future spaceships with enormous levels of speed and energy for interstellar travel. In gauge theories, true magnetic monopoles can provide regular solutions to the field equations involving the electromagnetic group. One of its theoretical uses would be to induce controlled fusion in plasma. Some people claim to have made motors for perpetual motion using these particles, but their validity remains to be examined. The assumption that there may be a potential danger from them since they can act as catalysts for proton decays is baseless. According to CERN labs during their experiments with the Large Hadron Collider (LHC) on vacuum bubbles, strangelets, and monopoles, the cosmic radiation reaching the earth could already be producing them. Still, the shielding effect of the earth and other heavenly bodies protects us from any hazard. Though a significant breakthrough has been achieved in their discovery, understanding the structure of magnetic monopoles and other topological entities are also important since they appear in the models that describe the early Universe and influence the properties of many materials, e.g. metals. http://csep10.phys.utk.edu/astr162/lect/cosmology/bbproblems.html http://www.dailymail.co.uk/sciencetech/article-2548880/Scientists-create-ONE-poled-magnet-unlock-secrets-surrounding-birth-universe.html https://farside.ph.utexas.edu/teaching/302l/lectures/node78.html http://news.stanford.edu/pr/94/940517Arc4260.html

Magnetic Monopole   Science Facts - 30